gld(9e) 맨 페이지 - 윈디하나의 솔라나라
|
svcadm(8)
을 검색하려면 섹션에서
8
을 선택하고, 맨 페이지 이름에
svcadm
을 입력하고 검색을 누른다.gld(9E) Driver Entry Points gld(9E) NAME gld, gldm_reset, gldm_start, gldm_stop, gldm_set_mac_addr, gldm_set_multicast, gldm_set_promiscuous, gldm_send, gldm_intr, gldm_get_stats, gldm_ioctl - Generic LAN Driver entry points SYNOPSIS #include <sys/gld.h> int prefix_reset(gld_mac_info_t *macinfo); int prefix_start(gld_mac_info_t *macinfo); int prefix_stop(gld_mac_info_t * macinfo); int prefix_set_mac_addr(gld_mac_info_t * macinfo, unsigned char *macaddr); int prefix_set_multicast(gld_mac_info_t * macinfo, unsigned char *multicastaddr, int multiflag); int prefix_set_promiscuous(gld_mac_info_t *macinfo, int promiscflag); int prefix_send(gld_mac_info_t *macinfo, mblk_t *mp); uint_t prefix_intr(gld_mac_info_t *macinfo); int prefix_get_stats(gld_mac_info_t *macinfo, struct gld_stats *stats); int prefix_ioctl(gld_mac_info_t *macinfo, queue_t *q, mblk_t *mp); INTERFACE LEVEL Solaris architecture specific (Solaris DDI). PARAMETERS macinfo Pointer to a gld_mac_info(9S) structure. macaddr Pointer to the beginning of a character array contain‐ ing a valid MAC address. The array will be of the length specified by the driver in the gldm_addrlen element of the gld_mac_info(9S) structure. multicastaddr Pointer to the beginning of a character array contain‐ ing a multicast, group, or functional address. The array will be of the length specified by the driver in the gldm_addrlen element of the gld_mac_info(9S) structure. multiflag A flag indicating whether reception of the multicast address is to be enabled or disabled. This argument is specified as GLD_MULTI_ENABLE or GLD_MULTI_DISABLE. promiscflag A flag indicating what type of promiscuous mode, if any, is to be enabled. This argument is specified as GLD_MAC_PROMISC_PHYS, GLD_MAC_PROMISC_MULTI, or GLD_MAC_PROMISC_NONE. mp Pointer to a STREAMS message block containing the packet to be transmitted or the ioctl to be executed. stats Pointer to a gld_stats(9S) structure to be filled in with the current values of statistics counters. q Pointer to the queue(9S) structure to be used in the reply to the ioctl. DESCRIPTION These entry points must be implemented by a device-specific network driver designed to interface with the Generic LAN Driver (GLD). As described in gld(4D), the main data structure for communication between the device-specific driver and the GLD module is the gld_mac_info(9S) structure. Some of the elements in that structure are function pointers to the entry points described here. The device-spe‐ cific driver must, in its attach(9E) routine, initialize these function pointers before calling gld_register(). gldm_reset() resets the hardware to its initial state. gldm_start() enables the device to generate interrupts and prepares the driver to call gld_recv() for delivering received data packets to GLD. gldm_stop() disables the device from generating any interrupts and stops the driver from calling gld_recv() for delivering data packets to GLD. GLD depends on the gldm_stop() routine to ensure that the device will no longer interrupt, and it must do so without fail. gldm_set_mac_addr() sets the physical address that the hardware is to use for receiving data. This function should program the device to the passed MAC address macaddr. gldm_set_multicast() enables and disables device-level reception of specific multicast addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE, then the function sets the interface to receive pack‐ ets with the multicast address pointed to by the second argument; if multiflag is set to GLD_MULTI_DISABLE, the driver is allowed to disable reception of the specified multicast address. This function is called whenever GLD wants to enable or disable recep‐ tion of a multicast, group, or functional address. GLD makes no assump‐ tions about how the device does multicast support and calls this func‐ tion to enable or disable a specific multicast address. Some devices may use a hash algorithm and a bitmask to enable collections of multi‐ cast addresses; this is allowed, and GLD will filter out any superflu‐ ous packets that are not required. If disabling an address could result in disabling more than one address at the device level, it is the responsibility of the device driver to keep whatever information it needs to avoid disabling an address that GLD has enabled but not dis‐ abled. gldm_set_multicast() will not be called to enable a particular multi‐ cast address that is already enabled, nor to disable an address that is not currently enabled. GLD keeps track of multiple requests for the same multicast address and only calls the driver's entry point when the first request to enable, or the last request to disable a particular multicast address is made. gldm_set_promiscuous() enables and disables promiscuous mode. This function is called whenever GLD wants to enable or disable the recep‐ tion of all packets on the medium, or all multicast packets on the medium. If the second argument promiscflag is set to the value of GLD_MAC_PROMISC_PHYS, then the function enables physical-level promis‐ cuous mode, resulting in the reception of all packets on the medium. If promiscflag is set to GLD_MAC_PROMISC_MULTI, then reception of all mul‐ ticast packets will be enabled. If promiscflag is set to GLD_MAC_PROMISC_NONE, then promiscuous mode is disabled. In the case of a request for promiscuous multicast mode, drivers for devices that have no multicast-only promiscuous mode must set the device to physical promiscuous mode to ensure that all multicast pack‐ ets are received. In this case the routine should return GLD_SUCCESS. The GLD software will filter out any superfluous packets that are not required. For forward compatibility, gldm_set_promiscuous() routines should treat any unrecognized values for promiscflag as though they were GLD_MAC_PROMISC_PHYS. gldm_send() queues a packet to the device for transmission. This rou‐ tine is passed a STREAMS message containing the packet to be sent. The message may comprise multiple message blocks, and the send routine must chain through all the message blocks in the message to access the entire packet to be sent. The driver should be prepared to handle and skip over any zero-length message continuation blocks in the chain. The driver should check to ensure that the packet does not exceed the maxi‐ mum allowable packet size, and must pad the packet, if necessary, to the minimum allowable packet size. If the send routine successfully transmits or queues the packet, it should return GLD_SUCCESS. The send routine should return GLD_NORESOURCES if it cannot immediately accept the packet for transmission; in this case GLD will retry it later. If gldm_send() ever returns GLD_NORESOURCES, the driver must, at a later time when resources have become available, call gld_sched() to inform GLD that it should retry packets that the driver previously failed to queue for transmission. (If the driver's gldm_stop() routine is called, the driver is absolved from this obligation until it later again returns GLD_NORESOURCES from its gldm_send() routine; however, extra calls to gld_sched() will not cause incorrect operation.) If the driver's send routine returns GLD_SUCCESS, then the driver is responsible for freeing the message when the driver and the hardware no longer need it. If the send routine copied the message into the device, or into a private buffer, then the send routine may free the message after the copy is made. If the hardware uses DMA to read the data directly out of the message data blocks, then the driver must not free the message until the hardware has completed reading the data. In this case the driver will probably free the message in the interrupt rou‐ tine, or in a buffer-reclaim operation at the beginning of a future send operation. If the send routine returns anything other than GLD_SUCCESS, then the driver must not free the message. gldm_intr() is called when the device might have interrupted. Since it is possible to share interrupts with other devices, the driver must check the device status to determine whether it actually caused an interrupt. If the device that the driver controls did not cause the interrupt, then this routine must return DDI_INTR_UNCLAIMED. Otherwise it must service the interrupt and should return DDI_INTR_CLAIMED. If the interrupt was caused by successful receipt of a packet, this rou‐ tine should put the received packet into a STREAMS message of type M_DATA and pass that message to gld_recv(). gld_recv() will pass the inbound packet upstream to the appropriate next layer of the network protocol stack. It is important to correctly set the b_rptr and b_wptr members of the STREAMS message before calling gld_recv(). The driver should avoid holding mutex or other locks during the call to gld_recv(). In particular, locks that could be taken by a transmit thread may not be held during a call to gld_recv(): the interrupt thread that calls gld_recv() may in some cases carry out processing that includes sending an outgoing packet, resulting in a call to the driver's gldm_send() routine. If the gldm_send() routine were to try to acquire a mutex being held by the gldm_intr() routine at the time it calls gld_recv(), this could result in a panic due to recursive mutex entry. The interrupt code should increment statistics counters for any errors. This includes failure to allocate a buffer needed for the received data and any hardware-specific errors such as CRC errors or framing errors. gldm_get_stats() gathers statistics from the hardware and/or driver private counters, and updates the gld_stats(9S) structure pointed to by stats. This routine is called by GLD when it gets a request for statis‐ tics, and provides the mechanism by which GLD acquires device dependent statistics from the driver before composing its reply to the statistics request. See gld_stats(9S) and gld(4D) for a description of the defined statistics counters. gldm_ioctl() implements any device-specific ioctl commands. This ele‐ ment may be specified as NULL if the driver does not implement any ioctl functions. The driver is responsible for converting the message block into an ioctl reply message and calling the qreply(9F) function before returning GLD_SUCCESS. This function should always return GLD_SUCCESS; any errors the driver may wish to report should be returned via the message passed to qreply(9F). If the gldm_ioctl ele‐ ment is specified as NULL, GLD will return a message of type M_IOCNAK with an error of EINVAL. RETURN VALUES gldm_intr() must return: DDI_INTR_CLAIMED if and only if the device definitely interrupted. DDI_INTR_UNCLAIMED if the device did not interrupt. The other functions must return: GLD_SUCCESS on success. gldm_stop() and gldm_ioctl() should always return this value. GLD_NORESOURCES if there are insufficient resources to carry out the request at this time. Only gldm_set_mac_addr(), gldm_set_multicast(), gldm_set_promiscuous(), and gldm_send() may return this value. GLD_NOLINK if gldm_send() is called when there is no physical connection to a network or link partner. GLD_NOTSUPPORTED if the requested function is not supported. Only gldm_set_mac_addr(), gldm_set_multicast(), and gldm_set_promiscuous() may return this value. GLD_BADARG if the function detected an unsuitable argument, for example, a bad multicast address, a bad MAC address, or a bad packet or packet length. GLD_FAILURE on hardware failure. SEE ALSO gld(4D), dlpi(4P), attach(9E), ddi_add_intr(9F), gld(9F), gld_mac_info(9S), gld_stats(9S) Writing Device Drivers in Oracle Solaris 11.4 Oracle Solaris 11.4 3 Jan 2001 gld(9E)맨 페이지 내용의 저작권은 맨 페이지 작성자에게 있습니다.
RSS ATOM XHTML 5 CSS3 |
Copyright © 2004-2024 Jo HoSeok. All rights reserved. |