fanotify(7) 맨 페이지 - 윈디하나의 솔라나라

개요

섹션
맨 페이지 이름
검색(S)

fanotify(7)

FANOTIFY(7)                Linux Programmer's Manual               FANOTIFY(7)



NAME
       fanotify - monitoring filesystem events

DESCRIPTION
       The  fanotify  API provides notification and interception of filesystem
       events.  Use cases include virus scanning and hierarchical storage man‐
       agement.   Currently,  only  a  limited set of events is supported.  In
       particular, there is no support for create, delete,  and  move  events.
       (See inotify(7) for details of an API that does notify those events.)

       Additional  capabilities  compared  to  the  inotify(7) API include the
       ability to monitor all of the objects  in  a  mounted  filesystem,  the
       ability  to  make  access  permission decisions, and the possibility to
       read or modify files before access by other applications.

       The following system calls are used with  this  API:  fanotify_init(2),
       fanotify_mark(2), read(2), write(2), and close(2).

   fanotify_init(), fanotify_mark(), and notification groups
       The  fanotify_init(2)  system  call creates and initializes an fanotify
       notification group and returns a file descriptor referring to it.

       An fanotify notification group is a kernel-internal object that holds a
       list  of  files,  directories,  filesystems, and mount points for which
       events shall be created.

       For each entry in an fanotify notification group, two bit masks  exist:
       the  mark mask and the ignore mask.  The mark mask defines file activi‐
       ties for which an event shall be  created.   The  ignore  mask  defines
       activities  for  which  no  event shall be generated.  Having these two
       types of masks permits a filesystem, mount point, or  directory  to  be
       marked for receiving events, while at the same time ignoring events for
       specific objects under a mount point or directory.

       The fanotify_mark(2) system call adds a file, directory, filesystem  or
       mount point to a notification group and specifies which events shall be
       reported (or ignored), or removes or modifies such an entry.

       A possible usage of the ignore mask is for a  file  cache.   Events  of
       interest for a file cache are modification of a file and closing of the
       same.  Hence, the cached directory or mount point is to  be  marked  to
       receive these events.  After receiving the first event informing that a
       file has been modified, the corresponding cache entry will  be  invali‐
       dated.   No  further  modification events for this file are of interest
       until the file is closed.  Hence, the modify event can be added to  the
       ignore  mask.   Upon receiving the close event, the modify event can be
       removed from the ignore mask and the file cache entry can be updated.

       The entries in the fanotify notification  groups  refer  to  files  and
       directories  via  their  inode number and to mounts via their mount ID.
       If files or directories are renamed or moved within the same mount, the
       respective  entries  survive.   If  files or directories are deleted or
       moved to another mount or if filesystems or mounts are  unmounted,  the
       corresponding entries are deleted.

   The event queue
       As  events  occur on the filesystem objects monitored by a notification
       group, the fanotify system generates events that  are  collected  in  a
       queue.   These  events can then be read (using read(2) or similar) from
       the fanotify file descriptor returned by fanotify_init(2).

       Two types of events are generated: notification events  and  permission
       events.   Notification  events  are  merely  informative and require no
       action to be taken by the  receiving  application  with  the  exception
       being  that the file descriptor provided within a generic event must be
       closed.  The closing of file descriptors for each event applies only to
       applications    that    have   initialized   fanotify   without   using
       FAN_REPORT_FID (see below).  Permission  events  are  requests  to  the
       receiving  application  to  decide whether permission for a file access
       shall be granted.   For  these  events,  the  recipient  must  write  a
       response which decides whether access is granted or not.

       An  event is removed from the event queue of the fanotify group when it
       has been read.  Permission events that have been read are  kept  in  an
       internal  list of the fanotify group until either a permission decision
       has been taken by writing to the fanotify file descriptor or  the  fan‐
       otify file descriptor is closed.

   Reading fanotify events
       Calling  read(2)  for  the file descriptor returned by fanotify_init(2)
       blocks (if the flag FAN_NONBLOCK is not specified in the call  to  fan‐
       otify_init(2))  until  either a file event occurs or the call is inter‐
       rupted by a signal (see signal(7)).

       The use of the FAN_REPORT_FID flag in fanotify_init(2) influences  what
       data  structures  are  returned  to  the event listener for each event.
       After a successful read(2), the read buffer contains one or more of the
       following structures:

           struct fanotify_event_metadata {
               __u32 event_len;
               __u8 vers;
               __u8 reserved;
               __u16 metadata_len;
               __aligned_u64 mask;
               __s32 fd;
               __s32 pid;
           };

       In  the  case  where  FAN_REPORT_FID is supplied as one of the flags to
       fanotify_init(2), you should  also  expect  to  receive  the  structure
       detailed  below following the generic fanotify_event_metadata structure
       within the read buffer:

           struct fanotify_event_info_fid {
               struct fanotify_event_info_header hdr;
               __kernel_fsid_t fsid;
               unsigned char file_handle[0];
           };

       For performance reasons, it is recommended to use a large  buffer  size
       (for  example, 4096 bytes), so that multiple events can be retrieved by
       a single read(2).

       The return value of read(2) is the number of bytes placed in  the  buf‐
       fer, or -1 in case of an error (but see BUGS).

       The fields of the fanotify_event_metadata structure are as follows:

       event_len
              This  is  the  length  of the data for the current event and the
              offset to the next event in the buffer.  Without FAN_REPORT_FID,
              the  value  of event_len is always FAN_EVENT_METADATA_LEN.  With
              FAN_REPORT_FID, event_len also includes the variable length file
              identifier.

       vers   This field holds a version number for the structure.  It must be
              compared to FANOTIFY_METADATA_VERSION to verify that the  struc‐
              tures  returned at run time match the structures defined at com‐
              pile time.  In case of a mismatch, the application should  aban‐
              don trying to use the fanotify file descriptor.

       reserved
              This field is not used.

       metadata_len
              This  is  the length of the structure.  The field was introduced
              to facilitate the implementation of optional headers  per  event
              type.  No such optional headers exist in the current implementa‐
              tion.

       mask   This is a bit mask describing the event (see below).

       fd     This is an open file descriptor for the object  being  accessed,
              or  FAN_NOFD if a queue overflow occurred.  If the fanotify file
              descriptor has been initialized using  FAN_REPORT_FID,  applica‐
              tions  should  expect  this value to be set to FAN_NOFD for each
              event that is received.  The file  descriptor  can  be  used  to
              access  the  contents  of  the monitored file or directory.  The
              reading  application  is  responsible  for  closing  this   file
              descriptor.

              When  calling  fanotify_init(2), the caller may specify (via the
              event_f_flags argument) various file status flags that are to be
              set  on  the open file description that corresponds to this file
              descriptor.  In addition, the  (kernel-internal)  FMODE_NONOTIFY
              file status flag is set on the open file description.  This flag
              suppresses fanotify event generation.  Hence, when the  receiver
              of  the  fanotify  event accesses the notified file or directory
              using this file descriptor, no additional events  will  be  cre‐
              ated.

       pid    If  flag FAN_REPORT_TID was set in fanotify_init(2), this is the
              TID of the thread that caused the event.   Otherwise,  this  the
              PID of the process that caused the event.

       A  program listening to fanotify events can compare this PID to the PID
       returned by getpid(2), to determine whether the event is caused by  the
       listener itself, or is due to a file access by another process.

       The  bit mask in mask indicates which events have occurred for a single
       filesystem object.  Multiple bits may be set in this mask, if more than
       one event occurred for the monitored filesystem object.  In particular,
       consecutive events for the same filesystem object and originating  from
       the  same process may be merged into a single event, with the exception
       that two permission events are never merged into one queue entry.

       The bits that may appear in mask are as follows:

       FAN_ACCESS
              A file or a directory (but see BUGS) was accessed (read).

       FAN_OPEN
              A file or a directory was opened.

       FAN_OPEN_EXEC
              A file was opened with the intent to be executed.  See NOTES  in
              fanotify_mark(2) for additional details.

       FAN_ATTRIB
              A file or directory metadata was changed.

       FAN_CREATE
              A child file or directory was created in a watched parent.

       FAN_DELETE
              A child file or directory was deleted in a watched parent.

       FAN_DELETE_SELF
              A watched file or directory was deleted.

       FAN_MOVED_FROM
              A  file or directory has been moved from a watched parent direc‐
              tory.

       FAN_MOVED_TO
              A file or directory has been moved to a  watched  parent  direc‐
              tory.

       FAN_MOVE_SELF
              A watched file or directory was moved.

       FAN_MODIFY
              A file was modified.

       FAN_CLOSE_WRITE
              A  file  that  was  opened  for writing (O_WRONLY or O_RDWR) was
              closed.

       FAN_CLOSE_NOWRITE
              A file or directory that was  opened  read-only  (O_RDONLY)  was
              closed.

       FAN_Q_OVERFLOW
              The event queue exceeded the limit of 16384 entries.  This limit
              can be overridden by  specifying  the  FAN_UNLIMITED_QUEUE  flag
              when calling fanotify_init(2).

       FAN_ACCESS_PERM
              An  application  wants  to read a file or directory, for example
              using read(2) or readdir(2).  The reader must write  a  response
              (as  described  below) that determines whether the permission to
              access the filesystem object shall be granted.

       FAN_OPEN_PERM
              An application wants to open a file or  directory.   The  reader
              must  write a response that determines whether the permission to
              open the filesystem object shall be granted.

       FAN_OPEN_EXEC_PERM
              An application wants to open a file for execution.   The  reader
              must  write a response that determines whether the permission to
              open the filesystem object for execution shall be granted.   See
              NOTES in fanotify_mark(2) for additional details.

       To check for any close event, the following bit mask may be used:

       FAN_CLOSE
              A file was closed.  This is a synonym for:

                  FAN_CLOSE_WRITE | FAN_CLOSE_NOWRITE

       To check for any move event, the following bit mask may be used:

       FAN_MOVE
              A file or directory was moved.  This is a synonym for:

                  FAN_MOVED_FROM | FAN_MOVED_TO

       The fields of the fanotify_event_info_fid structure are as follows:

       hdr    This is a structure of type fanotify_event_info_header.  It is a
              generic header that contains information used to describe  addi‐
              tional  information attached to the event.  For example, when an
              fanotify file descriptor is created  using  FAN_REPORT_FID,  the
              info_type     field     of     this    header    is    set    to
              FAN_EVENT_INFO_TYPE_FID.  Event listeners can use this field  to
              check  that  the additional information received for an event is
              of    the    correct    type.     Additionally,     the     fan‐
              otify_event_info_header  also contains a len field.  In the cur‐
              rent implementation, the value of len  is  always  (event_len  -
              FAN_EVENT_METADATA_LEN).

       fsid   This  is  a  unique  identifier of the filesystem containing the
              object associated with the event.  It is  a  structure  of  type
              __kernel_fsid_t and contains the same value as f_fsid when call‐
              ing statfs(2).

       file_handle
              This is a variable length structure of type file_handle.  It  is
              an  opaque  handle  that  corresponds to a specified object on a
              filesystem as returned by name_to_handle_at(2).  It can be  used
              to uniquely identify a file on a filesystem and can be passed as
              an argument to open_by_handle_at(2).  Note  that  for  directory
              entry  events, such as FAN_CREATE, FAN_DELETE, and FAN_MOVE, the
              file_handle describes the modified directory and  not  the  cre‐
              ated/deleted/moved   child   object.    The  events  FAN_ATTRIB,
              FAN_DELETE_SELF, and FAN_MOVE_SELF will  carry  the  file_handle
              information  for  the  child object if the child object is being
              watched.

       The following macros are provided to iterate over a  buffer  containing
       fanotify  event  metadata  returned  by a read(2) from an fanotify file
       descriptor:

       FAN_EVENT_OK(meta, len)
              This macro checks the remaining length len of  the  buffer  meta
              against  the  length of the metadata structure and the event_len
              field of the first metadata structure in the buffer.

       FAN_EVENT_NEXT(meta, len)
              This macro uses the length indicated in the event_len  field  of
              the  metadata  structure  pointed  to  by  meta to calculate the
              address of the next metadata structure that follows  meta.   len
              is  the number of bytes of metadata that currently remain in the
              buffer.  The macro returns a pointer to the next metadata struc‐
              ture  that  follows meta, and reduces len by the number of bytes
              in the metadata structure that has been skipped over  (i.e.,  it
              subtracts meta->event_len from len).

       In addition, there is:

       FAN_EVENT_METADATA_LEN
              This  macro  returns  the  size (in bytes) of the structure fan‐
              otify_event_metadata.  This is the minimum size  (and  currently
              the only size) of any event metadata.

   Monitoring an fanotify file descriptor for events
       When  an  fanotify event occurs, the fanotify file descriptor indicates
       as readable when passed to epoll(7), poll(2), or select(2).

   Dealing with permission events
       For permission events, the application must write(2) a structure of the
       following form to the fanotify file descriptor:

           struct fanotify_response {
               __s32 fd;
               __u32 response;
           };

       The fields of this structure are as follows:

       fd     This   is   the   file   descriptor   from  the  structure  fan‐
              otify_event_metadata.

       response
              This field indicates whether or not  the  permission  is  to  be
              granted.   Its  value must be either FAN_ALLOW to allow the file
              operation or FAN_DENY to deny the file operation.

       If access is denied, the requesting application call  will  receive  an
       EPERM error.

   Closing the fanotify file descriptor
       When  all file descriptors referring to the fanotify notification group
       are closed, the fanotify group is released and its resources are  freed
       for  reuse by the kernel.  Upon close(2), outstanding permission events
       will be set to allowed.

   /proc/[pid]/fdinfo
       The file /proc/[pid]/fdinfo/[fd] contains  information  about  fanotify
       marks for file descriptor fd of process pid.  See proc(5) for details.

ERRORS
       In  addition  to the usual errors for read(2), the following errors can
       occur when reading from the fanotify file descriptor:

       EINVAL The buffer is too small to hold the event.

       EMFILE The per-process limit on the  number  of  open  files  has  been
              reached.  See the description of RLIMIT_NOFILE in getrlimit(2).

       ENFILE The system-wide limit on the total number of open files has been
              reached.  See /proc/sys/fs/file-max in proc(5).

       ETXTBSY
              This error is returned by read(2)  if  O_RDWR  or  O_WRONLY  was
              specified  in  the  event_f_flags  argument  when  calling  fan‐
              otify_init(2) and an event occurred for a monitored file that is
              currently being executed.

       In  addition to the usual errors for write(2), the following errors can
       occur when writing to the fanotify file descriptor:

       EINVAL Fanotify access permissions are not enabled in the  kernel  con‐
              figuration or the value of response in the response structure is
              not valid.

       ENOENT The file descriptor fd in the response structure is  not  valid.
              This  may  occur  when  a  response for the permission event has
              already been written.

VERSIONS
       The fanotify API was introduced in version 2.6.36 of the  Linux  kernel
       and  enabled  in  version  2.6.37.  Fdinfo support was added in version
       3.8.

CONFORMING TO
       The fanotify API is Linux-specific.

NOTES
       The fanotify API is available only if the kernel  was  built  with  the
       CONFIG_FANOTIFY  configuration  option  enabled.  In addition, fanotify
       permission   handling   is   available   only   if   the    CONFIG_FAN‐
       OTIFY_ACCESS_PERMISSIONS configuration option is enabled.

   Limitations and caveats
       Fanotify reports only events that a user-space program triggers through
       the filesystem API.  As a result, it does not catch remote events  that
       occur on network filesystems.

       The  fanotify  API does not report file accesses and modifications that
       may occur because of mmap(2), msync(2), and munmap(2).

       Events for directories are created only  if  the  directory  itself  is
       opened,  read, and closed.  Adding, removing, or changing children of a
       marked directory does not create events  for  the  monitored  directory
       itself.

       Fanotify  monitoring of directories is not recursive: to monitor subdi‐
       rectories under a directory, additional marks must  be  created.   (But
       note  that  the fanotify API provides no way of detecting when a subdi‐
       rectory has been created under a marked directory, which  makes  recur‐
       sive monitoring difficult.)  Monitoring mounts offers the capability to
       monitor a whole directory  tree.   Monitoring  filesystems  offers  the
       capability  to  monitor  changes  made  from  any mount of a filesystem
       instance.

       The event queue can overflow.  In this case, events are lost.

BUGS
       Before Linux 3.19,  fallocate(2)  did  not  generate  fanotify  events.
       Since Linux 3.19, calls to fallocate(2) generate FAN_MODIFY events.

       As of Linux 3.17, the following bugs exist:

       *  On  Linux,  a  filesystem  object may be accessible through multiple
          paths, for example, a part of a filesystem may  be  remounted  using
          the  --bind option of mount(8).  A listener that marked a mount will
          be notified only of events that  were  triggered  for  a  filesystem
          object using the same mount.  Any other event will pass unnoticed.

       *  When an event is generated, no check is made to see whether the user
          ID of the receiving process has authorization to read or  write  the
          file  before  passing a file descriptor for that file.  This poses a
          security risk, when the CAP_SYS_ADMIN capability is set for programs
          executed by unprivileged users.

       *  If  a  call  to  read(2) processes multiple events from the fanotify
          queue and an error occurs, the return value will be the total length
          of  the  events  successfully copied to the user-space buffer before
          the error occurred.  The return value will not be -1, and errno will
          not  be set.  Thus, the reading application has no way to detect the
          error.

EXAMPLE
       The two example programs below demonstrate the usage  of  the  fanotify
       API.

   Example program: fanotify_example.c
       The  first  program is an example of fanotify being used with its event
       object information passed in the form of a file descriptor.   The  pro‐
       gram  marks the mount point passed as a command-line argument and waits
       for events of type FAN_OPEN_PERM and FAN_CLOSE_WRITE.  When  a  permis‐
       sion event occurs, a FAN_ALLOW response is given.

       The  following  shell session shows an example of running this program.
       This session involved editing the file  /home/user/temp/notes.   Before
       the  file  was  opened, a FAN_OPEN_PERM event occurred.  After the file
       was closed, a FAN_CLOSE_WRITE event occurred.  Execution of the program
       ends when the user presses the ENTER key.

           # ./fanotify_example /home
           Press enter key to terminate.
           Listening for events.
           FAN_OPEN_PERM: File /home/user/temp/notes
           FAN_CLOSE_WRITE: File /home/user/temp/notes

           Listening for events stopped.

   Program source: fanotify_example.c

       #define _GNU_SOURCE     /* Needed to get O_LARGEFILE definition */
       #include <errno.h>
       #include <fcntl.h>
       #include <limits.h>
       #include <poll.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <sys/fanotify.h>
       #include <unistd.h>

       /* Read all available fanotify events from the file descriptor 'fd' */

       static void
       handle_events(int fd)
       {
           const struct fanotify_event_metadata *metadata;
           struct fanotify_event_metadata buf[200];
           ssize_t len;
           char path[PATH_MAX];
           ssize_t path_len;
           char procfd_path[PATH_MAX];
           struct fanotify_response response;

           /* Loop while events can be read from fanotify file descriptor */

           for (;;) {

               /* Read some events */

               len = read(fd, (void *) &buf, sizeof(buf));
               if (len == -1 && errno != EAGAIN) {
                   perror("read");
                   exit(EXIT_FAILURE);
               }

               /* Check if end of available data reached */

               if (len <= 0)
                   break;

               /* Point to the first event in the buffer */

               metadata = buf;

               /* Loop over all events in the buffer */

               while (FAN_EVENT_OK(metadata, len)) {

                   /* Check that run-time and compile-time structures match */

                   if (metadata->vers != FANOTIFY_METADATA_VERSION) {
                       fprintf(stderr,
                               "Mismatch of fanotify metadata version.\n");
                       exit(EXIT_FAILURE);
                   }

                   /* metadata->fd contains either FAN_NOFD, indicating a
                      queue overflow, or a file descriptor (a nonnegative
                      integer). Here, we simply ignore queue overflow. */

                   if (metadata->fd >= 0) {

                       /* Handle open permission event */

                       if (metadata->mask & FAN_OPEN_PERM) {
                           printf("FAN_OPEN_PERM: ");

                           /* Allow file to be opened */

                           response.fd = metadata->fd;
                           response.response = FAN_ALLOW;
                           write(fd, &response,
                                 sizeof(struct fanotify_response));
                       }

                       /* Handle closing of writable file event */

                       if (metadata->mask & FAN_CLOSE_WRITE)
                           printf("FAN_CLOSE_WRITE: ");

                       /* Retrieve and print pathname of the accessed file */

                       snprintf(procfd_path, sizeof(procfd_path),
                                "/proc/self/fd/%d", metadata->fd);
                       path_len = readlink(procfd_path, path,
                                           sizeof(path) - 1);
                       if (path_len == -1) {
                           perror("readlink");
                           exit(EXIT_FAILURE);
                       }

                       path[path_len] = '\0';
                       printf("File %s\n", path);

                       /* Close the file descriptor of the event */

                       close(metadata->fd);
                   }

                   /* Advance to next event */

                   metadata = FAN_EVENT_NEXT(metadata, len);
               }
           }
       }

       int
       main(int argc, char *argv[])
       {
           char buf;
           int fd, poll_num;
           nfds_t nfds;
           struct pollfd fds[2];

           /* Check mount point is supplied */

           if (argc != 2) {
               fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);
               exit(EXIT_FAILURE);
           }

           printf("Press enter key to terminate.\n");

           /* Create the file descriptor for accessing the fanotify API */

           fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,
                              O_RDONLY | O_LARGEFILE);
           if (fd == -1) {
               perror("fanotify_init");
               exit(EXIT_FAILURE);
           }

           /* Mark the mount for:
              - permission events before opening files
              - notification events after closing a write-enabled
                file descriptor */

           if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,
                             FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,
                             argv[1]) == -1) {
               perror("fanotify_mark");
               exit(EXIT_FAILURE);
           }

           /* Prepare for polling */

           nfds = 2;

           /* Console input */

           fds[0].fd = STDIN_FILENO;
           fds[0].events = POLLIN;

           /* Fanotify input */

           fds[1].fd = fd;
           fds[1].events = POLLIN;

           /* This is the loop to wait for incoming events */

           printf("Listening for events.\n");

           while (1) {
               poll_num = poll(fds, nfds, -1);
               if (poll_num == -1) {
                   if (errno == EINTR)     /* Interrupted by a signal */
                       continue;           /* Restart poll() */

                   perror("poll");         /* Unexpected error */
                   exit(EXIT_FAILURE);
               }

               if (poll_num > 0) {
                   if (fds[0].revents & POLLIN) {

                       /* Console input is available: empty stdin and quit */

                       while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')
                           continue;
                       break;
                   }

                   if (fds[1].revents & POLLIN) {

                       /* Fanotify events are available */

                       handle_events(fd);
                   }
               }
           }

           printf("Listening for events stopped.\n");
           exit(EXIT_SUCCESS);
       }

   Example program: fanotify_fid.c
       The   second  program  is  an  example  of  fanotify  being  used  with
       FAN_REPORT_FID enabled.  The program marks the filesystem  object  that
       is  passed  as a command-line argument and waits until an event of type
       FAN_CREATE has occurred.   The  event  mask  indicates  which  type  of
       filesystem  object—either a file or a directory—was created".  Once all
       events have been read from the buffer and  processed  accordingly,  the
       program simply terminates.

       The  following  shell  sessions  show two different invocations of this
       program, with different actions performed on a watched object.

       The first session shows a mark being placed  on  /home/user.   This  is
       followed  by  the  creation of a regular file, /home/user/testfile.txt.
       This results in a FAN_CREATE event being created and  reported  against
       the  file's  parent  watched  directory object.  Program execution ends
       once all events captured within the buffer have been  processed.   Pro‐
       gram execution ends once all events captured within the buffer are pro‐
       cessed.

           # ./fanotify_fid /home/user
           Listening for events.
           FAN_CREATE (file created): Directory /home/user has been modified.
           All events processed successfully. Program exiting.

           $ touch /home/user/testing              # In another terminal

       The second session shows a mark being placed on  /home/user.   This  is
       followed by the creation of a directory, /home/user/testdir.  This spe‐
       cific  action  results  in  the  program  producing  a  FAN_CREATE  and
       FAN_ONDIR event.

           # ./fanotify_fid /home/user
           Listening for events.
           FAN_CREATE | FAN_ONDIR (subdirectory created):
                   Directory /home/user has been modified.
           All events processed successfully. Program exiting.

           $ mkdir -p /home/user/testing          # In another terminal

   Program source: fanotify_fid.c

       #define _GNU_SOURCE
       #include <errno.h>
       #include <fcntl.h>
       #include <limits.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <sys/types.h>
       #include <sys/stat.h>
       #include <sys/fanotify.h>
       #include <unistd.h>

       #define BUF_SIZE 256

       int
       main(int argc, char **argv)
       {
           int fd, ret, event_fd;
           ssize_t len, path_len;
           char path[PATH_MAX];
           char procfd_path[PATH_MAX];
           char events_buf[BUF_SIZE];
           struct file_handle *file_handle;
           struct fanotify_event_metadata *metadata;
           struct fanotify_event_info_fid *fid;

           if (argc != 2) {
               fprintf(stderr, "Invalid number of command line arguments.\0);
               exit(EXIT_FAILURE);
           }

           /* Create an fanotify file descriptor with FAN_REPORT_FID as a flag
              so that program can receive fid events. */

           fd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_FID, 0);
           if (fd == -1) {
               perror("fanotify_init");
               exit(EXIT_FAILURE);
           }

           /* Place a mark on the filesystem object supplied in argv[1]. */

           ret = fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_ONLYDIR,
                               FAN_CREATE | FAN_ONDIR,
                               AT_FDCWD, argv[1]);
           if (ret == -1) {
               perror("fanotify_mark");
               exit(EXIT_FAILURE);
           }

           printf("Listening for events.\0);

           /* Read events from the event queue into a buffer */

           len = read(fd, (void *) &events_buf, sizeof(events_buf));
           if (len == -1 && errno != EAGAIN) {
               perror("read");
               exit(EXIT_FAILURE);
           }

           /* Process all events within the buffer */

           for (metadata = (struct fanotify_event_metadata *) events_buf;
                   FAN_EVENT_OK(metadata, len);
                   metadata = FAN_EVENT_NEXT(metadata, len)) {
               fid = (struct fanotify_event_info_fid *) (metadata + 1);
               file_handle = (struct file_handle *) fid->handle;

               /* Ensure that the event info is of the correct type */

               if (fid->hdr.info_type != FAN_EVENT_INFO_TYPE_FID) {
                   fprintf(stderr, "Received unexpected event info type.\0);
                   exit(EXIT_FAILURE);
               }

               if (metadata->mask == FAN_CREATE)
                   printf("FAN_CREATE (file created):");

               if (metadata->mask == FAN_CREATE | FAN_ONDIR)
                   printf("FAN_CREATE | FAN_ONDIR (subdirectory created):");

               /* metadata->fd is set to FAN_NOFD when FAN_REPORT_FID is enabled.
                  To obtain a file descriptor for the file object corresponding to
                  an event you can use the struct file_handle that's provided
                  within the fanotify_event_info_fid in conjunction with the
                  open_by_handle_at(2) system call. A check for ESTALE is done
                  to accommodate for the situation where the file handle for the
                  object was deleted prior to this system call. */

               event_fd = open_by_handle_at(AT_FDCWD, file_handle, O_RDONLY);
               if (ret == -1) {
                   if (errno == ESTALE) {
                       printf("File handle is no longer valid. "
                               "File has been deleted\0);
                       continue;
                   } else {
                       perror("open_by_handle_at");
                       exit(EXIT_FAILURE);
                }
               }

               snprintf(procfd_path, sizeof(procfd_path), "/proc/self/fd/%d",
                       event_fd);

               /* Retrieve and print the path of the modified dentry */

               path_len = readlink(procfd_path, path, sizeof(path) - 1);
               if (path_len == -1) {
                   perror("readlink");
                   exit(EXIT_FAILURE);
               }

               path[path_len] = '\ ';
               printf("\tDirectory '%s' has been modified.\0, path);

               /* Close associated file descriptor for this event */

               close(event_fd);
           }

           printf("All events processed successfully. Program exiting.\0);
           exit(EXIT_SUCCESS);
       }

SEE ALSO
       fanotify_init(2), fanotify_mark(2), inotify(7)

COLOPHON
       This page is part of release 5.02 of the Linux man-pages project.  A
       description of the project, information about reporting bugs, and the
       latest version of this page, can be found at
       https://www.kernel.org/doc/man-pages/.



Linux                             2019-08-02                       FANOTIFY(7)
맨 페이지 내용의 저작권은 맨 페이지 작성자에게 있습니다.
RSS ATOM XHTML 5 CSS3